San Antonio River Authority Stream Restoration Program

Presented by: Joan Bryant, P.E. & Vicky Chavez, E.I.T

What is Stream Restoration?

- The re-establishment of the general structure, function and self-sustaining behavior of the stream system that existed prior to disturbance.
- Holistic process

Doll, B.A. et. al. (1999) *Stream Restoration: A Natural Channel Design Handbook*. Preface. North Carolina Stream Restoration Institute.

The Importance of Stream Restoration

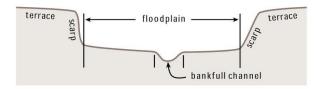
- Restores/enhances ecological health
 - Increases native biodiversity
 - · Provides habitat for new or previously existing flora and fauna
 - May reduce invasive species
- Restores functionality
 - Establishes stable flow patterns
 - Improves connection to the floodplain
 - Balance sediment transport
- Allows for increased education and community interaction
 - Recreation
 - Land cooling
 - Aesthetics

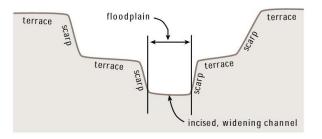
Impacts to a Stream

Direct Impacts (Changes to the stream)

- Flow Regulation
- Channelization and Dams
- Point Source Discharges
- Floodplain Encroachment
- Snagging and Removal of Wood
- Road / Utility Crossings
- Livestock Access to Channel

Indirect Impacts (Changes to the watershed)


- Agriculture
- Forestry/Tree Harvesting
- Urbanization
- Road density

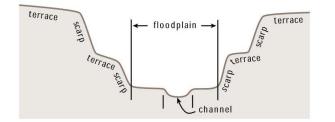


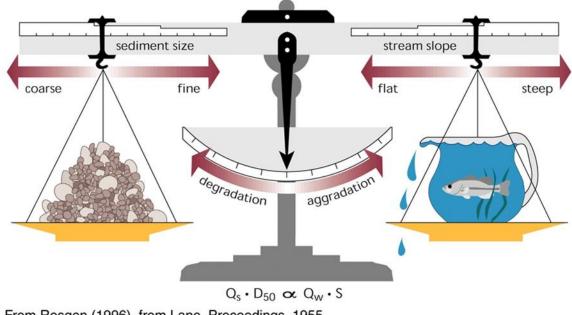
As Watersheds Change, so does the Stream...

A. Nonincised Stream

B. Incised Stream (early widening phase)

C. Incised Stream (widening phase complete)

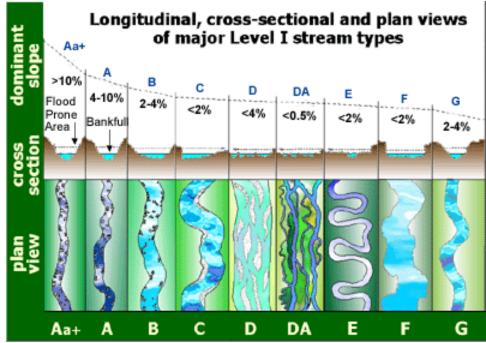



Figure 1.24: Terraces in (A) nonincised and (B and C) incised streams. Terraces are abandoned floodplains, formed through the interplay of incising and floodplain widening.

FISRWG (10/1998)

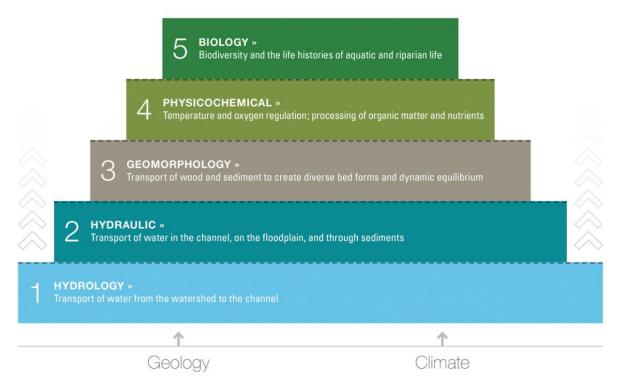
How does a Channel Change?

- Stream responds to changes in flow and sediment
- Movement of Sediment


From Rosgen (1996), from Lane, Proceedings, 1955. Published with the permission of American Society of Civil Engineers.

> Fig. 1.13 – Factors affecting channel degradation and aggradation: Concept of "Stream Balance.". In Stream Corridor Restoration: Principles, Processes, and Practices, 1098. Interagency Stream Restoration Working Group (15 Federal Agencies of the US).

Methods of Stream Restoration


- Rosgen
 - Stream categories based on channel morphology
 - Uses stream classification to establish a baseline to predict stream behavior from its physical characteristics and to compare various stream conditions with site-specific data
 - 4 Levels
 - I: Geomorphology
 - II: Morphological description (measurements)
 - III: Stream condition and stability
 - IV: Verification of predictions

Methods of Stream Restoration

- Stream Mechanics Harman et al.
 - Uses a function-based approach
 - Functional Pyramid and Uplift Table
 - Identifies 15 functions critical to stream health and riparian ecosystems, with emphasis on the base building upward (broad-level view)
 - 5 Main levels
 - Hydrology
 - Hydraulic
 - Geomorphology
 - Physicochemical
 - Biology

Harman, W., R. Starr, M. Carter, K. Tweedy, M. Clemmons, k. Suggs, C. Miller. 2012. *A Function-Based Framework for Stream Assessment and Restoration Projects.* US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington DC EPA 843-K-12-006.

Program Overview and Plans

Stream Restoration Program History

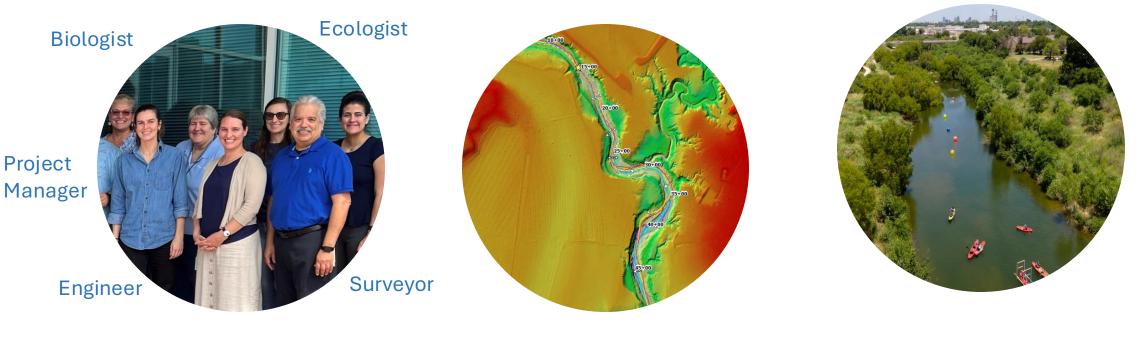
The program was developed in 2009 in response to the recurrent challenges posed by channel erosion and instability.

Successes:

- Natural Channel Design Protocol
- Stream Restoration Potential Database
- Stream Restoration Potential Projects List

- Reference Reach Data
- Training
- Banking Mitigation Feasibility Study
- Project Design and Construction

• Regional Curves



Past Project Selection

Project selection has historically been based largely on desktop analysis and/or a reactionary basis to events such as bank failure or impending risk to infrastructure.

Program Initiatives

MULTI-DISCIPLINARY TEAM

REACTIVE & PROACTIVE

HOLISTIC APPROACH

Project Selection

Data

Available

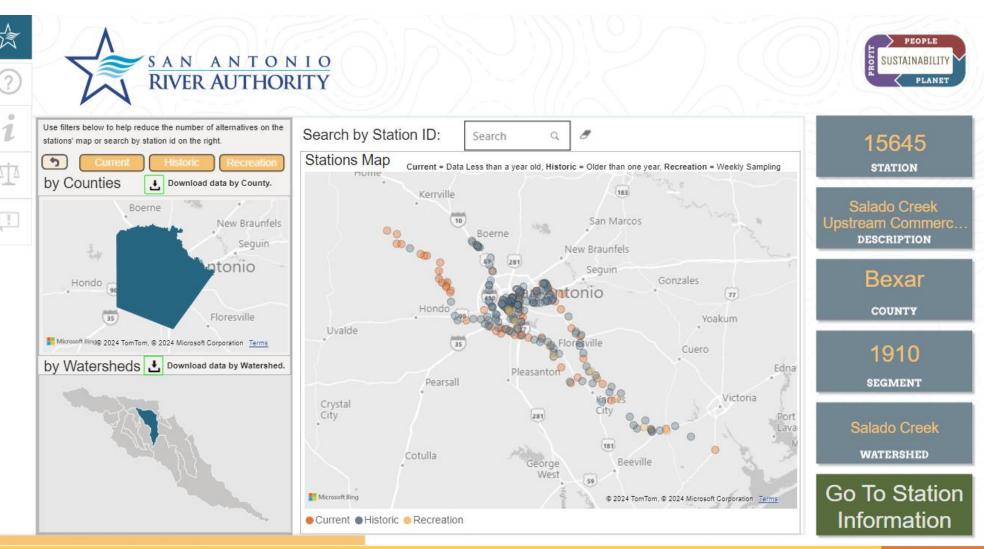
- Water quality sampling data
- Biological monitoring
 - Fish
 - Macroinvertebrate
 - Mussel
- Watershed Master Plan Viewer

Goals

Aquatic connectivity database

• eDNA

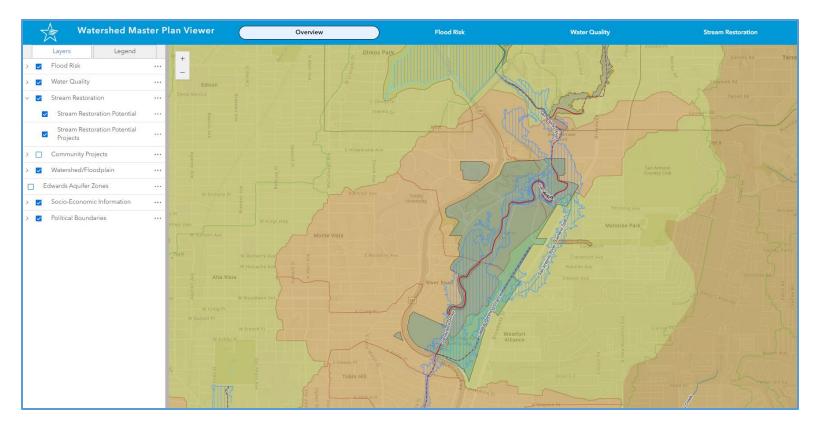
- Plantings list to target specific pollutants
- Holistic Project Selection Tool



Available Data

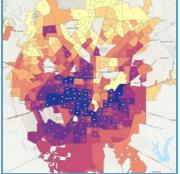
Water Quality Sampling Data

Biological Monitoring


Watershed Master Plan Viewer

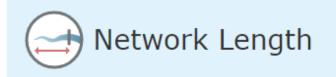
Stream Restoration

Flood Risk



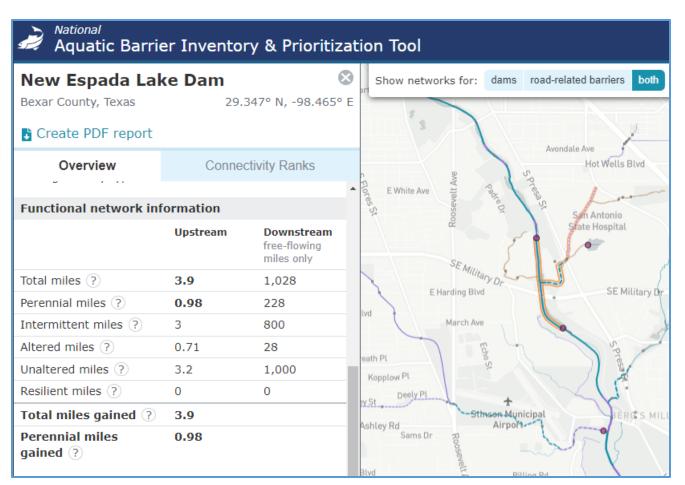
Water Quality

Equity


Data Goals


Aquatic Connectivity

Southwest Aquatic Resource Partnership

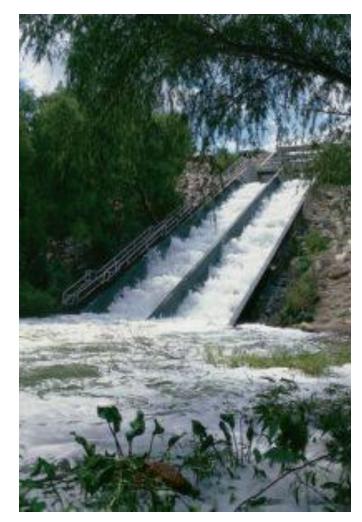

Aquatic Connectivity Program

eDNA

Environmental DNA

- Air
- Sediments
- Water
- Fish
- Plants
- Feces (food identification)

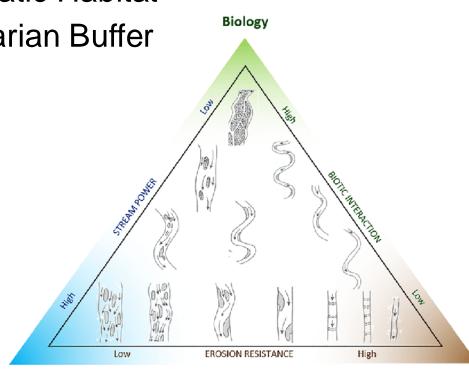
Armored Catfish (Pterygoplichthys sp)



Blue Tilapia

- A resource that helps identify potential factors impacting the river's health (e.g. invasive species), using less resources than current project processes.
- Monitoring and Management

Aquatic Plants for Bioaccumulation


- Target uptake for excess nitrogen and phosphorous
- Identifying plants with high removal rates and native to our area

Project Selection Tool

- Water Quality
- Engineered Stability
- Aquatic Habitat
- Riparian Buffer

Criteria	Comments	Scoring
Water Quality	What kind of stream is it?	Perennial
		Intermitent
		Ephemeral
	Is the stream in a WQ subbasin? Is the stream a TCEQ-impared stream?	Yes
		No
		Yes
		No
	la sustan en ella sustanti de la sustanti d	Yes
	Is water quality currently impared?	No
	Will water quality be improved?	Yes
		No
Aquatic Habitat		1
Aquatic Habitat		
	Will native species diversity be	No
	enhanced?	Yes
	Will the proposed project add	Yes
	connectivity?	No
	connectivity.	Yes
	Will riffles or pools be added?	No, but there is potential
	this inter or poor be added	No, there is no potential
		Yes
	Is there large, woody debris?	No

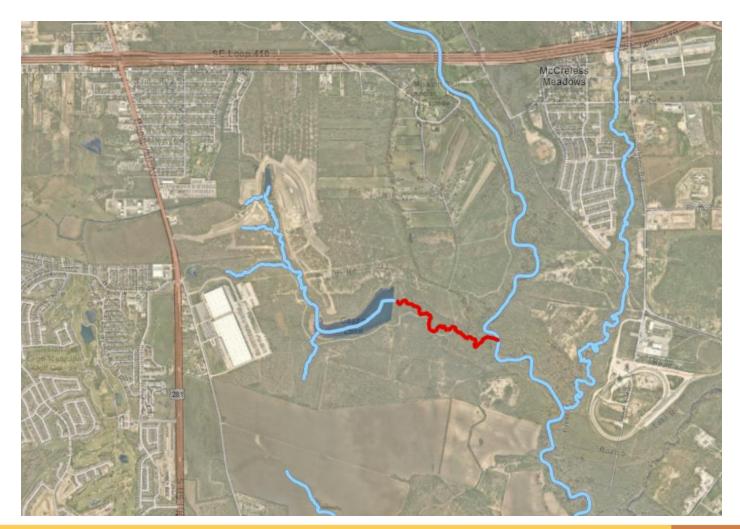
Image: Castro, Janine & Thorne, Colin. (2019). The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications. 35. 10.1002/rra.3421.

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

Geology

Additional Benefits

- Grants
 - Addressing a variety of goals with a single project
 - Habitat protection
 - Aquatic Connectivity
- State-wide Leader



Active Project

Minita Creek Stream Restoration

- Downstream of Cassin Lake
- Flows in SAR
- SARA and TAMU-SA property
 - Work with TAMU-SA students
 - Educational site

Minita Creek

Questions?

